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Surfaces 
We consider hyperbolic surfaces  (Surfaces with negative Euler characteristic)

Background 



Filling curves

Example:

A closed curve on a surface is said to be filling if it intersects 
every non-trivial simple closed curve on the surface.

Complement of a filling curve is a union of discs and annuli



Set of isotopy classes of marked hyperbolic structures.

Each point in Teichmuller space of 𝜮, can be denoted as (𝞍, X) where X is a surface 
with complete, finite area hyperbolic metric with totally geodesic boundary and 𝞍 is a 
diffeomorphism from 𝜮 to X.

Teichmuller space



Length infinimum 
Fix a topological surface  𝚺 and let Teich(𝚺) denote its Teichmuller space. Consider a non-simple 
closed curve γ in 𝚺. 

For (𝞍,X ) in(𝚺) . Let l ᵧ(X) denote the ‘X-length’ of the geodesic in the free homotopy class of  𝞍(γ).

We define the length infimum of  γ as follows:

m(γ) = inf { l ᵧ(X) :  (𝞍,X ) in Teich(𝚺)}



● Invariant under action on Mapping Class Group on Teichmuller space.
● Infimum is attained i.e. it is the minimum.
● Unique.

Properties:



                                    
                         

Self intersection number vs Length 
Motivation 

Currency:

  Length

Want to buy:

Self intersections



● Does there exist distinct filling curves with same length infimum? 
              -Yes

● Does there exist distinct filling curves with same self intersection 
number that have same length infimum?

            -(Mostly yes) 

● Does there exist two distinct filling curves with same self intersection 
number have different length infimum?

Questions



Theorem :
Consider a genus 0 surface with n punctures. For any k 
(suitably large) we can find two distinct curves with self 
intersection number k and different length infinimum..
 

Results



Key Ideas…
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Thick vs thin part

Minimal filling curves

Length bounds 
near cusps

Collar lemmas



Proof  ( sphere with punctures)



Surfaces with punctures



Closed surfaces
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